ESTIMATION OF A TRIP TABLE AND THE Θ PARAMETER IN A STOCHASTIC NETWORK

SHIHSIEN LIU
Department of Transportation Management, Tamkang University, Taipei, Taiwan, R.O.C.

and
JON D. FRICKER
School of Civil Engineering, Purdue University, West Lafayette, IN 47907-1284, U.S.A.
(Received 13 March 1995)

Abstract

An origin-destination (O-D) table that accurately portrays a study area's travel patterns is a valuable element in the modeling and analysis used to support public transportation investment decisions. The probabilistic approach to $\mathrm{O}-\mathrm{D}$ table estimation involves a heuristic enumeration of link choice probabilities. The parameter Θ, which reflects the variation in path choices among tripmakers, has not been discussed in the context of O-D table estimation, nor has an efficient way been demonstrated to determine the associated link use probabilities. This paper presents a method for O-D table estimation in a stochastic network. The "OD.Theta" method can not only estimate the O-D table, it also estimates the Θ parameter in the same process. The proposed method is illustrated using a sample test network. Finally, the method is applied to a real network, with the results compared to those from some well-known O-D estimation software. Copyright (C) 1996 Elsevier Science Ltd

INTRODUCTION

The accuracy of an origin-destination (O-D) table estimated from link counts is affected by many factors, including the accuracy of the link counts and the assumed route choice behavior of the tripmakers. There are three main ways to approach this problem, all of which are based on explicit trip-making behavior.

The Gravity Model assumes that each trip interchange value is based on the level of productions and attractions at the trip origin and destination, and on a function that represents the spatial separation of each origin-destination pair. Because trip impedance between each O-D pair affects the level of the trip production and attraction, the main drawback of the gravity model is that it cannot handle with accuracy external-external (or 'through') trips (Willumsen, 1981).

A second approach uses mathematical programming techniques associated with equilibrium traffic assignment methods to estimate a trip matrix in a congested network. Based on the user equilibrium condition, Nguyen (1977) developed a bi-level programming structure to derive O-D tables from traffic counts via two models. By 'bi-level programming problem', we mean using two separate but interdependent optimization models to solve the problem iteratively. The major disadvantage of this approach is that a bi-level programming structure would pose computational difficulties for a large network.

The third approach, entropy maximization (EM) and information minimization (IM), can make full use of the information contained in the observed flows. Actually, EM and IM are two similar but distinct model types. EM assumes that observed link counts follow the multinomial distribution. This assumption provides the basis for modeling O-D trip patterns if no more information is known about the network flows. The IM model, however, adjusts the EM's distribution assumption if given information about the degree to which O-D trips use each of the links in the network. Unfortunately, the link use information is usually derived from an outdated or artificially fabricated trip table.

Models following the EM and IM philosophies are developed and analyzed in Van Zuylen and Willumsen (1980), and Beagan (1986) applied these methods on a small network. However, the input information is tedious and hard to generate in practice. A more recent version of The Highway Emulator (THE) (Bromage, 1988) has eased the input effort, but the underlying assumptions and the need to internally fabricate a 'target' trip table remain.

Probabilistic O-D estimation approaches such as EM and IM involve a heuristic enumeration of link choice probabilities. Most previous optimization approaches have neglected: (a) the fact that not all drivers will have perfect information on path travel costs; and (b) how sensitive drivers' choices of paths are among reasonable candidate paths. By incorporating the assumption that the logit model describes driver route choice, the underspecified nature of this problem is resolved. This paper addresses networks that have stochastic characteristics (i.e. travelers' perceptions of link costs vary) and extends the $O-D$ estimation model to include the Θ route choice parameter at the same time.

NOTATION

$A:$ set of links
$K:$ set of possible paths
$N:$ set of nodes
Θ : stochastic assignment dispersion parameter
$\{(r, s)\}:$ set of O-D pairs $\forall r, s \in N$
$\delta_{a k}^{r s}= \begin{cases}1 & \text { if link } a \text { is on path } k \text { between } r \text { and } s \\ 0 & \text { otherwise }\end{cases}$
c_{a} : observed travel cost on link a
$c_{k}^{r s}=\sum_{a}\left(c_{a} \cdot \delta_{a k}^{r s}\right): k$ th path travel cost from r to s
$P_{k}^{r s}:$ probability of selecting path k from r to s
$P_{r s a}$: probability of choosing link a on all possible paths from r to s
$T_{r s}$: target trip interchange value from r to s, if available
$q^{r s}: \mathrm{O}-\mathrm{D}$ flow from r to s
$x_{a}^{\mathrm{obs}}:$ observed link volume on $\operatorname{link} a$
$x_{a}^{e s t}$: estimated link volume on link a from the model

METHODOLOGY

The formulation

Given a set of link flows and link travel costs, estimating the best $O-D$ table and Θ parameter can be interpreted as reversing the stochastic logit network loading process (Sheffi, 1985) so that the assigned link flows from the estimated $O-D$ table and Θ parameter are close to the observed flows. Consequently, we can formulate the $\mathrm{O}-\mathrm{D}$ table and Θ parameter estimation as minimizing the difference between modeled and observed flows, and solve the problem by using a stochastic logit assignment approach and nonlinear programming techniques. The formulation is as follows.

$$
\begin{gather*}
L\left(q^{r s}, \Theta\right)=\operatorname{Min} \sum_{a}\left[\sum_{r s} q^{r s} \cdot\left(\sum_{k} P_{k}^{r s} \cdot \delta_{a k}^{r s}\right)-x_{a}^{\mathrm{obs}}\right]^{2} \tag{1}\\
\text { s.t. } \\
\qquad q^{r s} \geq 0 .
\end{gather*}
$$

Because all variables must be non-negative, the optimal solution will be located either at the boundary point or in the interior of the feasible region, as shown in Fig. 1.

Fig. 1. Optimality in constrained cases.

The mathematical forms of Fig. 1(a) and (b) are:

$$
\begin{align*}
x \cdot \frac{\partial f(x)}{\partial x} & =0 \tag{2}\\
\frac{\partial f(x)}{\partial x} & \geq 0 \\
x & \geq 0 .
\end{align*}
$$

The above formulation can be interpreted as Primal and Dual problems in Linear Programming and converted to a Linear Complementarity Problem (LCP) (Bazaraa \& Shetty, 1979). To make this conversion, eqn (1) is modified as follows.

$$
\begin{equation*}
L=\operatorname{Min} \sum_{a}\left[\sum_{r s} q^{r s} \cdot\left(\sum_{k} P_{k}^{r s} \cdot \delta_{a k}^{r s}\right)-x_{a}^{\mathrm{obs}}\right]^{2}-\sum_{r} \sum_{s} w^{r s} \cdot q^{r s} \tag{3}
\end{equation*}
$$

where $q^{r s}$ and Θ are decision variables and

$$
P_{k}^{r s}=\frac{\mathrm{e}^{-\Theta \cdot \sum_{a} c_{a}\left(x_{a}^{(x s)}\right) \cdot \delta_{a k}^{r s}}}{\sum_{k} \mathrm{e}^{-\Theta \cdot \sum_{a} c_{a}\left(x_{a}^{(x s)}\right) \cdot \delta_{a k}^{s i}}}
$$

Also, $w^{r s}$ is the dual variable of O-D flow, $q^{r s}$.
From the optimality conditions in eqns (2), we get the following problem:

$$
\begin{gather*}
\frac{\partial L}{\partial q^{r s}}=0 \rightarrow 2 \sum_{a}\left[\sum_{k}\left(P_{k}^{r s} \delta_{a k}^{r s}\right) \cdot\left(\sum_{r s} q^{r s} \cdot \sum_{k}\left(P_{k}^{r s} \delta_{a k}^{r s}\right)-x_{a}^{\mathrm{obs}}\right)\right]-w^{r s}=0 \quad \forall(r, s) \tag{4}\\
w^{r s} \cdot \frac{\partial L}{\partial w^{r s}}=0 \rightarrow w^{r s} \cdot q^{r s}=0 . \\
w^{r s} \geq 0 \\
q^{r s} \geq 0
\end{gather*}
$$

Using linear algebra, this formulation can be restated as:

$$
\begin{align*}
\mathbf{W}-\mathbf{M} \cdot \mathbf{q} & =\mathbf{b} \tag{5}\\
\mathbf{W} \cdot \mathbf{q} & =0 \\
\mathbf{W} & \geq 0 \\
\mathbf{q} & \geq 0
\end{align*}
$$

where
W : vector of dual variable of $q^{r s}$
M : positive definite Hessian matrix of the objective function
q : vector of O-D flow to be estimated
b : vector of right hand side

$$
\begin{gathered}
\mathbf{M} \cdot \mathbf{q}=\sum_{a} P_{r s a} \cdot\left(\sum_{r s} P_{r s a}\right) \quad \forall(r, s) \\
\mathbf{b}=\sum_{a} P_{r s a} \cdot\left(-x_{a}^{\mathrm{obs}}\right) .
\end{gathered}
$$

The formulation above is actually a LCP that is guaranteed to terminate in a finite number of steps with either an optimal or unbounded solution (Bazaraa \& Shetty, 1979; Evans, 1971). In 1968, Lemke introduced a revised simplex method to solve this problem, but restricted both entering and leaving variables to be complementary to each other.

Solving the problem by using the derivative of the objective function with respect to Θ can accelerate convergence, but carries with it greater computational effort in path searching. To avoid path enumeration and to estimate both Θ and an O-D table, we separate the search procedures for the optimal solution into two stages. The first stage applies a logit-based assignment model combined with Lemke's LCP algorithm to estimate the O-D table. Solutions from the first stage then act as an input to the second stage -the maximum likelihood method-to get the parameter Θ. Iterations are repeated until the the first derivative of the maximum likelihood value approaches zero.

In 1974, Robillard showed how maximum likelihood could be used to estimate the parameters in the multipath assignment method introduced by Dial in 1971 (Dial, 1971; Sheffi, 1985). Robillard used a link-based approach in applying the maximum likelihood method, but the search method he applied was deficient. Because a maximum likelihood formulation is an unconstrained problem, to calibrate a Θ parameter is to find the convergent point when the value of the first derivative of the objective function vanishes. However, Robillard estimated these first derivative function values by introducing two initial Θ parameters. If the signs of the two initial first derivative function values are the same, then the estimated interval of Θ s will be expanded by 10%. Otherwise, a binary search is used to locate the points for the next iteration.
Because the local optimal point is located where the first derivative vanishes, if the signs of the first derivatives of the objective function associated with two points, Θ_{1} and Θ_{2}, are opposite, then the optimal solution Θ^{*} exists between Θ_{1} and Θ_{2}. Fisk (1977) suggested a path-based approach to formulate the Θ calibration problem using the maximum likelihood method, in which the optimal solution can be searched more efficiently. Her search effort used the Hessian matrix-the second derivative of the objective function. However, the preliminary task of calculating each path probability can be costly, so Fisk's approach becomes impractical when the network is large and has multiple paths.

Two-stage calibration for Θ

Let $\quad x_{a}$: flow on link a
and

$$
f_{k}^{r s}=\mathbf{q}^{r s} \cdot P_{k}^{r s}
$$

where $f_{k}^{r s}$: flow on path k from r to s, and other notation is as before.
The maximum likelihood method then can be formulated as:

$$
\begin{equation*}
\lambda\left(\left\{f_{k}^{r s}\right\}, \Theta\right)=\prod_{r s} \prod_{k}\left(P_{k}^{r s}\right)^{f r s} \tag{6}
\end{equation*}
$$

where

$$
P_{k}^{r s}=\frac{\mathrm{e}^{-\Theta \cdot C_{k}^{\prime s}}}{\sum_{k} \mathrm{e}^{-\theta \cdot c_{k}^{r s}}}
$$

Let

$$
\begin{equation*}
L(\Theta)=\ln \lambda\left(\left\{f_{k}^{r s}\right\}, \Theta\right)=\sum_{r s} \sum_{k} f_{k}^{r s} \cdot \ln \left(F_{k}^{r s}\right) \tag{7}
\end{equation*}
$$

Because

$$
\begin{align*}
E\left(c_{k}^{r s}\right) & =\sum_{k} c_{k}^{r s} \cdot P_{k}^{r s} \tag{8}\\
& =\sum_{k}\left[\sum_{a}\left(c_{a}^{r s} \cdot \delta_{a k}^{r s}\right)\right] \cdot P_{k}^{r s} \\
& =\sum_{a} c_{a}^{r s} \cdot\left(\sum_{k} P_{k}^{r s} \cdot \delta_{a k}^{r s}\right) \\
& =\sum_{a} c_{a}^{r s} \cdot P_{r s a}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{k} f_{k}^{r s} \cdot c_{k}^{r s} & =\sum_{k}\left[q^{r s} \cdot P_{k}^{r s} \cdot c_{k}^{r s}\right] \tag{9}\\
& =\sum_{k}\left\{q^{r s} \cdot P_{k}^{r s} \cdot\left(\sum_{a} c_{a}^{r s} \cdot \delta_{a k}^{r s}\right)\right\} \\
& =\sum_{a}\left\{q^{r s} \cdot\left(\sum_{k} P_{k}^{r s} \cdot \delta_{a k}^{r s}\right) \cdot c_{a}^{r s}\right\} \\
& =\sum_{a} x_{a}^{r s} \cdot c_{a}^{r s}
\end{align*}
$$

this is an unconstrained optimization problem. The stationary point can be obtained when the first derivative is zero:

$$
\begin{equation*}
\frac{\partial L(\Theta)}{\partial \Theta}=\sum_{r s} \sum_{k} f_{k}^{r s} \cdot \frac{1}{P_{k}^{r s}} \cdot P_{k}^{r s} \cdot\left[E\left(c_{k}^{r s}\right)-c_{k}^{r s}\right]=0 \tag{10}
\end{equation*}
$$

From (8)

$$
\begin{aligned}
\frac{\partial L(\Theta)}{\partial \Theta} & =\sum_{r s} \sum_{k} f_{k}^{r s} \cdot\left\{\left[\sum_{a} c_{a}^{r s} \cdot P_{r s a}\right]-c_{k}^{r s}\right\} \\
& =\sum_{r s}\left\{\sum _ { a } \left[\left(c_{a}^{r s} \cdot P_{r s a}\right) \cdot\left(\sum_{k} f_{k}^{r s} c_{k}^{r s}\right\}\right.\right.
\end{aligned}
$$

From (9)

$$
\begin{aligned}
\frac{\partial L(\Theta)}{\partial \Theta} & =\sum_{r s}\left\{\sum_{a}\left[c_{a}^{r s} \cdot P_{r s a} \cdot q^{r s}\right]-\left[\sum_{a} c_{a}^{r s} \cdot x_{a}^{r s}\right]\right\} \\
& =\sum_{a} c_{a} \cdot\left[x_{a}^{\mathrm{est}}-x_{a}^{\mathrm{obs}}\right]
\end{aligned}
$$

In eqn (10), the first derivative of the maximum likelihood function contains only link variables. However, estimating the second derivative of the objective function, $\frac{\partial^{2} L}{\partial \Theta^{2}}$, requires path enumeration, which makes this approach ineffective. To avoid directly computing the second derivative of the objective function, the secant method (Haggerty, 1972, pp. 53-54) approximates the second derivative value by using the slope of two first derivatives of the objective function. Starting at two initial values, the next point then can be obtained as shown in Fig. 2.

Based on this two-stage line search strategy, a convergent solution will be obtained by iterative applications of the LCP algorithm and the maximum likelihood method. Therefore, the optimal solution of an $\mathrm{O}-\mathrm{D}$ table, as well as the Θ parameter, can be found. For this reason, we shall refer to the proposed method as the 'OD•Theta' approach.

Fig. 2. Line search by the Secant Method.

SOLUTION ALGORITHM

To estimate an O-D table and to calibrate a Θ parameter in a stochastic network, the steps in the proposed OD.Theta approach are as follows.

1. Let RUN $=0$, where RUN is the number of iterations so far. Start with two initial Θ values, say, Θ_{1} and Θ_{2}. Let $\Theta=\Theta_{1}$. If tripmakers will not accept distinctly inferior paths, the possible range of Θ values will be between zero and some positive number.
2. Determine all-to-all shortest paths (Minieka, 1978). A flow pattern in a real transportation network involves multiple O-D pairs. In an uncongested stochastic network, the all-to-all shortest path information is especially useful for the logit assignment model. This is because the defined route choice set involves a comparison at each intermediate node to determine whether the next sequential node is closer to the destination and farther away from the origin node. Such a sequence of nodes comprises a 'reasonable' route. (Sheffi, 1985, p. 288)
3. RUN $=$ RUN +1
4. Traffic assignment by the logit model. To formulate the objective function using least squared error requires the link use probabilities from each O-D pair. The logit model as implemented by Dial's algorithm (Dial, 1971; Sheffi, 1985) establishes the framework for estimating these $P_{r s a}$ values, which appear in eqns (5) and eqns (10).
5. Least squared error formulation. Develop the least squared error objective function as in eqn (1) and convert the least squared form into a LCP standard form. In the converted formulation, only the $\mathrm{O}-\mathrm{D}$ variables $\mathbf{q}^{r s}$ are decision variables.
6. Use the LCP algorithm to solve for the O-D table.
7. Calculate Root Mean Square

$$
\text { RMSE }=\sqrt{\frac{\sum_{a}\left(x_{a}^{\text {est }}-x_{a}^{\mathrm{obs}}\right)^{2}}{N-1}}
$$

where N is the number of links with observed link counts and $a \in$ set of links with counts. Check the first derivative of the likelihood function and calculate RMSE. If the values are within acceptable error or RUN reaches the maximum allowed number of iterations, STOP; otherwise, go to next step.
8. If RUN $=1$, then let $\Theta=\Theta_{2}$ and go to Step 3; otherwise, go to next step.
9. Find a new Θ_{1} by the Secant Method. Of the two old Θ s, keep the one with the lower absolute first derivative value as Θ_{2}, and go to Step 3 .
The only input data are the observed link counts and link costs; the decision variables are the $\mathrm{O}-\mathrm{D}$ table entries and the Θ parameter.

SAMPLE TESTS

In this section, a network used by Robillard (1974) and Fisk (1977) (see Fig. 3) is employed to demonstrate the estimation of both Θ and an $\mathrm{O}-\mathrm{D}$ table. If the first two

Fig. 3. Robillard Network
iterations are not counted, the convergent solutions using bi-level programming are as shown in Fig. 4.

The final results are $\Theta=1.35$ (which matches the value found by both Robillard and Fisk) and the $\mathrm{O}-\mathrm{D}$ matrix shown in Table 1.

The results not only verify that an O-D table and a Θ parameter can be estimated at the same time, but they also demonstrate that the OD.Theta algorithm matches the observed link volumes closely.

The next example will show that errors in an $\mathrm{O}-\mathrm{D}$ table and in a Θ estimation can be caused by adopting a poor tripmaker path choice rule. The "hypothetical observed link counts" in Fig. 3 were obtained from a logit assignment using the input data-an O-D table and, a Θ parameter-and the assumption that tripmakers only choose 'reasonable' routes. By employing the same path choice rules, reversing the network loading procedures to estimate both an $\mathrm{O}-\mathrm{D}$ table and a Θ parameter should duplicate the original conditions. However, in a real network, drivers may not always restrict their choices to 'reasonable' paths. If this 'reasonable path' rule is followed, the possible paths from origins 1 and 2 to destination 9 in Fig. 3 will never include link (2,3). This is because, from node 2 , the shortest path travel cost to the destination is 3 units. If drivers choose node 3 from node 2 as their next node, the shortest path travel cost to the destination from node 3 is still 3 units, which is not closer to the destination. Therefore, the 'reasonable path'

Fig. 4. Convergent OD.Theta solutions for Robillard Network.

Table 1. Multiple estimation result ($\Theta=1.35$)

Origin	Destination	
	8	9
1	500	199
2	0	
		300
		Flow
	$x^{\text {obs }}$	
Link	230	$x^{\text {est }}$
$(1,2)$	239	230.42
$(1,4)$	230	238.69
$(1,5)$	0	230.42
$(2,3)$	530	0
$(2,5)$	0	530.39
$(3,6)$	60	0
$(4,5)$	179	59.55
$(4,7)$	158	179.13
$(5,6)$	505	157.91
$(5,8)$	158	504.56
$(5,9)$	158	157.91
$(6,9)$	179	157.91
$(7,8)$		179.13
$(8,9)$		183.55

rule excludes paths 1-2-3-6-9 and 2-3-6-9 from consideration, even though their total path costs are only one unit greater than some of the 'reasonable' paths. This is likely to make the logit assignment flow pattern less dispersed than the actual pattern.

If we redefine 'reasonable' paths as those whose sequence of nodes merely take tripmakers further away from their origin nodes, then the estimation results for Fig. 3 get worse. (See Fig. 5 and Table 2.) $\Theta=1.926$, which produces a flow pattern with an average $\mathrm{RMSE} \approx 13$ trips per link (vs nearly zero in Table 1). After changing the 'reasonable path' rule, some travelers now use link $(2,3)$ to reach destination 9 from origin 1 or 2 . In

Fig. 5. Convergent solutions by changed choice set.

Table 2. Multiple estimation result after changed choice set ($\theta=1.926$)

Origin	Destination	
	8	9
1	512	185
2	0	312
Link	$x^{\text {obs }}$	$x^{\text {cst }}$
$(1,2)$	230	239.27
$(1,4)$	239	221.39
$(1,5)$	230	235.73
$(2,3)$	0	17.98
$(2,5)$	530	532.8
$(3,6)$	0	17.98
$(4,5)$	60	34.35
$(4,7)$	179	187.04
$(5,6)$	158	151.26
$(5,8)$	505	500.36
$(5,9)$	158	151.26
$(6,9)$	158	169.24
$(7,8)$	179	187.04
$(8,9)$	184	175.6

both Figs 4 and 5, the compatible convergence behavior of the RMSE and first partial derivative values can be observed, although the RMSE plot levels out more quickly. In addition, some tests indicated that the derivative values are not as stable as the RMSE values, as the iterations continue toward the stopping criteria.

If we relax the 'reasonable path' definition as described above, more alternatives that are intuitively 'reasonable' can be considered and chosen. Link $(2,3)$, although having no 'observed' link counts, is also modeled as being chosen by some travelers. Because the objective function is to minimize the least squared error, the model will decrease the path flow passing through link $(2,3)$ to as close to zero as possible. This has the impact of increasing the flow on the other possible paths and increasing the value of the Θ parameter. When compared with the results in Table 1, the final solution in Table 2 underestimates the O-D flow from node 1 to node 9 and overestimates other O-D trips.

There is no general criterion by which to determine which path choice rule is better. However, if some links with observed link counts have not been selected by a model, then analysts need to revise the route choice rules.

Another small network, called Oct8X (see Fig. 6), was used for tests of the 'OD•Theta' approach and The Highway Emulator (THE). THE is a well-known softwarc package that estimates O-D tables from link counts using the Maximum Entropy approach (Van Zuylen \& Willumsen, 1980). THE's O-D estimation algorithm makes the smallest possible adjustments to an initial trip table in order to match the observed link volumes (Bromage, 1988). Results from THE on 'Oct8X' are listed in Table 3.

For 'Oct8X', the OD.Theta approach finds the minimum RMSE when $\Theta=0.413$. (See Fig. 7.) The corresponding O-D table and link flows are summarized in Table 4.

If we check the estimated and observed trip ends of each origin and destination, we find that THE underestimates trips from zone 1 by 46.5% and trips to zone 2 by 51.4%. The difference in these two cases is less than 8% when the OD.Theta approach is used. The total number of observed trip ends is 16,225 . However, THE underestimates this total by about 20%, while the OD-Theta total is within 1%. On a network designed for completely different purposes, the proposed OD.Theta approach meets important performance criteria very well.

In the next section, a real data set for a network near the Purdue University campus will be tested and the results will be compared with those from THE.

Fig. 6. Test network 'Oct8X'.

Table 3. O-D table for Oct8X by THE

0	D				Total
	1	2	3	4	
1	0	142	2068	1482	3692
2	888	0	908	363	2159
3	1293	1605	0	5	2903
4	2147	1775	227	0	4149
Total	4328	3522	3203	1850	12903

Fig. 7. RMSE fit of Oct8X by OD.Theta.

Table 4. $\mathrm{O}-\mathrm{D}$ table for $\operatorname{Oct} 8 \mathrm{X}$ Fit by $\mathrm{OD} \cdot$ Theta $(\Theta-0.413)$

0	D				Total
	1	2	3	4	
1	0	4051	2206	638	6895
2	934	0	990	429	2353
3	537	1285	0	642	2464
4	2494	1907	1	0	4402
Total	3965	7243	3197	1709	16114

	Flow	
Link	$x^{\text {obs }}$	
	$x^{\text {est }}$	
$(1,5)$	6900	6894.57
$(2,6)$	2340	2358.07
$(3,7)$	2435	2446.74
$(4,8)$	4550	4390.34
$(5,1)$	3960	3965.42
$(5,6)$	3374	3325.53
$(5,7)$	2509	2504.16
$(5,8)$	1571	1730.12
$(6,2)$	7250	7252.76
$(6,5)$	880	858.59
$(6,7)$	1100	1071.68
$(6,9)$	360	427.79
$(7,3)$	3170	3180.25
$(7,5)$	1285	1267.84
$(7,6)$	1589	1574.49
$(8,4)$	1845	1691.30
$(8,5)$	2350	2504.23
$(8,6)$	1898	2120.65
$(8,9)$	388	232.08
$(9,6)$	388	232.08
$(9,8)$	360	427.79

TESTS ON A REAL NETWORK

The Village Network

The street system adjacent to Purdue University's campus is highly congested during the AM and PM peak hours. There is heavy pedestrian traffic crossing the streets near campus, including a state highway. In an effort to improve traffic flow and increase pedestrian safety, this street network (in what is known as 'The Village') underwent significant changes on 13 May 1991. The principal change was the conversion of four major arterial streets from 2way to l-way operation. Figures 8 and 9 show the changes in detail. Data on link counts and turning movements were collected before and after the street network changes. In September 1990 and September 1991, license plate surveys were conducted to estimate flow patterns within and through The Village. The Village network before 13 May 1991 (Fig. 8) is referred to as 'VillNet1'; after that date (Fig. 9), it is called 'VillNet2'. The O-D tables derived from the two license plate surveys are shown in Tables 5 and 6.

VillNet 1, a network representation developed to test traffic assignment models, contains links that portray turning movements at each major intersection in some detail. Conservation of flow at each node was achieved by using a maximum entropy method contained in THE. The O-D table subsequently estimated by THE is listed in Table 7. The total O-D flows are 6756, which is close to the total of 6651 that was estimated by the first license plate survey.

Using the same data, a best fit O-D estimate for VillNetl was found by searching for the minimum RMSE while assigning O-D traffic flow by OD-Theta. The results are shown in Fig. 10 and in Table 8.

The OD.Theta results show a Θ value of 0.255 for VillNet1. A positive Θ value means that users are trying to choose their shortest paths; as Θ increases, the probability of

(2)
\bigcirc

Table 5. O-D table for VillNet 1 from License Plate Survey

0	D															Total
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	0	14	96	39	24	17	11	65	105	396	22	24	4	13	34	864
2	26	0	24	2	1	1	0	3	49	34	2	1	0	1	8	152
3	75	2	0	29	17	12	9	49	247	186	30	16	3	10	26	711
4	35	0	32	0	4	2	2	9	27	50	4	4	0	2	5	176
5	55	1	51	10	0	4	2	15	43	79	6	6	0	4	8	284
6	58	1	51	10	6	0	2	15	44	82	6	6	0	4	8	293
7	59	1	54	10	6	4	0	15	46	84	6	6	0	4	8	303
8	58	1	53	9	6	4	2	0	45	83	6	6	0	4	8	285
9	146	33	293	55	32	23	15	90	0	184	44	31	4	20	36	1006
10	670	26	219	69	41	28	21	113	143	0	45	40	7	24	96	1542
11	20	0	19	4	2	2	0	6	16	29	0	1	0	0	3	103
12	50	5	34	7	3	3	2	12	37	82	4	0	0	2	13	254
13	31	6	64	8	4	4	2	14	41	59	7	4	0	2	7	253
14	51	2	60	6	3	3	1	10	26	66	0	3	0	0	27	258
15	33	0	30	6	2	2	2	9	27	48	4	2	0	2	0	167
Total	1367	92	1080	264	151	109	71	425	896	1462	186	151	18	92	287	6651

Table 6. O-D table for VillNet2 from License Plate Survey

O	D															Total
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	0	12	60	11	0	4	2	210	86	480	9	6	0	0	11	891
2	47	0	43	21	0	39	0	3	0	0	0	0	0	0	04	157
3	313	1	0	26	13	7	1	35	243	188	12	14	11	0	104	968
4	9	0	20	0	56	0	0	7	7	4	0	0	0	0	0	103
5	64	1	187	34	0	0	0	29	43	18	0	3	0	0	0	379
6	67	1	37	0	2	0	0	19	25	138	16	3	0	0	10	318
7	50	1	80	25	0	0	6	19	0	35	10	3	0	0	0	229
8	226	0	19	17	0	0	0	0	30	11	0	0	0	0	0	303
9	81	1	344	58	3	13	0	39	0	83	95	2	7	0	44	770
10	876	46	84	30	1	36	1	44	235	0	23	22	8	0	13	1419
11	40	0	61	10	0	5	0	4	29	22	0	0	0	0	10	181
12	88	0	9	11	0	7	0	2	12	52	0	0	0	0	2	183
13	62	0	74	13	0	0	0	3	108	5	4	0	0	0	2	271
14	66	0	79	6	1	6	0	4	20	60	0	0	0	0	6	248
15	2	0	84	5	0	7	0	3	68	10	0	0	0	0	0	179
Total	1991	63	1181	267	76	124	10	421	906	1106	169	53	26	0	206	6599

Table 7. O-D table for VillNetl from THE

0	D															Total
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	0	34	46	21	12	13	11	371	23	343	4	15	1	4	8	906
2	51	0	1	0	0	3	21	1	42	0	7	3	1	7	0	137
3	76	1	0	49	28	1	0	3	312	153	56	18	11	1	20	729
4	3	0	30	0	9	0	0	0	53	40	10	5	3	0	17	170
5	6	0	46	24	0	0	0	0	82	62	15	8	4	1	26	274
6	48	34	6	4	1	0	0	2	15	155	3	21	0	3	4	296
7	16	3	54	28	16	0	0	0	68	51	12	2	3	23	30	306
8	3	18	26	11	7	7	6	0	13	189	2	8	1	2	4	297
9	40	8	574	10	6	15	3	1	0	127	30	5	0	15	100	934
10	982	6	115	51	30	64	57	36	112	0	20	73	4	19	20	1589
11	4	0	51	1	0	2	0	0	15	11	0	1	0	1	9	95
12	97	0	7	15	9	2	3	4	4	163	1	0	0	1	1	307
13	11	2	151	2	2	4	1	0	44	34	8	1	0	4	26	290
14	14	10	17	8	4	3	1	0	107	46	18	7	34	0	9	283
15	1	0	10	15	9	0	0	0	52	39	9	5	3	0	0	143
Total	1352	116	1134	239	133	114	103	418	942	1413	195	172	70	80	274	6756

Fig. 10. RMSE fit of VillNet1 by OD.Theta.

Table 8. O-D table for VillNetl from OD.Theta

0	D															Total
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	0	1	0	97	62	0	0	349	0	363	0	0	0	0	0	872
2	43	0	1	1	1	7	0	0	0	1	15	71	0	0	1	141
3	20	1	0	0	0	0	63	0	236	179	174	0	0	0	74	747
4	0	1	0	0	92	0	0	0	0	52	0	1	0	0	27	173
5	0	1	157	0	0	0	0	0	8	113	0	1	0	0	0	280
6	192	1	0	0	0	0	1	0	0	67	0	1	0	0	56	318
7	0	1	85	0	0	1	0	0	281	21	0	1	0	44	9	443
8	1	1	30	0	0	0	38	0	149	26	0	0	0	46	0	291
9	243	1	524	0	0	1	0	7	0	231	0	1	0	1	0	1009
10	888	51	198	117	0	120	40	0	20	0	0	108	0	0	0	1542
11	0	1	77	0	0	1	0	0	22	0	0	1	0	1	0	103
12	1	78	0	0	0	0	0	1	0	234	0	0	0	20	0	334
13	10	1	0	53	0	1	0	0	150	0	0	1	0	1	85	302
14	0	1	0	0	0	8	35	0	0	176	0	1	0	0	37	258
15	0	,	0	0	0	0	69	64	32	0	0	1	0	0	0	167
Total	1398	141	1072	268	155	139	246	421	898	1463	189	188	0	113	289	6378

choosing the single shortest path increases. The relatively small value of Θ in this solution may mean that road users in VillNetl are not well aware of the actual shortest paths or are unwilling to seek time-saving routes around congested (but more familiar) arterial links. Separate research (Fricker \& Moffett, 1993) indicates that such driver behavior does take place.

The curve of RMSE vs Θ in Fig. 10 is a quasi-convex function (Bazaraa \& Shetty, 1979). This is reasonable, because when θ approaches ∞ or $-\infty$, the limiting traffic assignment pattern will follow the shortest paths or longest paths, respectively. Therefore, the assigned link flow patterns at these extreme Θ values should approach a steady state and a constant RMSE value.

Taking the $\mathbf{O}-\mathrm{D}$ table based on the license plate survey as the true table for VillNetl, the sum of squared errors from THE is 430,488 , which is better than the OD.Theta approach's 580,537 . However, comparing the volumes of major O-D flows tells a different story. The major through volumes in the study area-between, zones 10 and 1 and between zones 9 and 3-are thought to be the most reliable $0-\mathrm{D}$ entries, based on the

Table 9. Comparison of VillNetl through trip O-D entries

	O-D entries			
Method	$(1,10)$	$(10,1)$	$(3,9)$	$(9,3)$
License Plate	396	670	247	293
OD•Theta	363	888	212	236
THB43	982		574	524

matching of vehicle license plate numbers. Assuming the $\mathrm{O}-\mathrm{D}$ entries from the license plate approach are correct, THE gives a poorer estimate of these major through trips than does OD-Theta (see Table 9).

The reason why THE estimates these major through trips poorly might be EM's underlying multinomial distribution, which assumes random variates with equal probability for each possible outcome. This assumption is derived from the physical law of molecular behavior, but this assumption may not be true when applied to driver route choice. One consequence would be a tendency to underestimate through trips. In contrast, the OD.Theta approach has the added flexibility of adjusting Θ in seeking the O-D table estimate whose traffic assignment pattern minimizes RMSE. In addition, EM cannot produce an accurate estimate for an O-D pair if the final solution must be zero (Bromage, 1988) and it provides an O-D table with systematic errors when the total O-D flow is not equal to the total number of trips in the 'observed' trip table (Gur, 1983; Willumsen, 1981).

The same network after changes
The VillNet2 link counts used by THE lead to Table 10. The VillNet2 results from OD.Theta are shown in Fig. 11 and Table 11.

Comparing O-D estimates for VillNet1 and VillNet2, the total PM peak hour O-D volume estimated by THE increases by 500 trips. The total O-D volume estimated by OD.Theta is about 650 trips more for VillNet2 than for VillNet 1, but closer to the license-plate-based Table 6 total than is THE.

The Θ parameter in The Village after the street system changes dropped from 0.255 to 0.118. This is 'evidence' of somewhat greater route choice dispersion than in VillNet1. Because many obvious direct routes between two points have been eliminated by the new one-way street pattern, motorists have been forced to try a variety of more circuitous routes to reach their destinations. As a member of the Mayor's task force set up to study

Table 10. O-D table for VillNet2 from THE

0	D															Total
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	0	14	0	5	1	9	12	178	39	442	7	2	0	0	174	883
2	119	0	0	2	1	4	6	14	18	163	4	1	0	0	66	398
3	183	58	0	43	14	73	106	21	338	43	60	15	4	0	5	963
4	5	1	55	0	3	4	5	1	17	3	3	1	0	0	4	102
5	18	4	189	33	0	13	19	2	60	8	10	3	1	0	15	375
6	40	1	18	4	1	0	15	4	48	159	9	9	0	0	2	310
7	10	1	78	14	4	1	0	1	99	39	17	2	18	0	7	291
8	36	3	0	2	0	3	3	0	11	119	2	0	1	0	47	227
9	46	8	368	65	20	3	0	5	0	183	12	10	0	1	29	750
10	1477	13	2	16	5	28	40	171	129	0	23	5	2	0	8	1919
11	10	1	81	14	5	0	1	1	14	40	0	2	0	1	6	176
12	5	6	1	9	3	14	21	0	67	20	12	0	1	0	4	163
13	8	2	69	12	4	0	0	1	110	34	20	2	0	0	5	287
14	22	2	78	14	5	0	8	3	26	87	4	5	0	0	6	260
15	9	2	97	4	1	7	10	1	30	4	6	1	1	0	0	173
Total	1988	116	1036	237	67	159	246	403	1006	1344	189	58	28	2	378	7257

Fig. 11. RMSE fit of VillNet2 by OD.Theta.

Table 11. O-D Table for VillNet2 from OD.Theta

0	D															Total
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	0	5	0	0	0	0	0	193	0	562	0	0	0	0	132	892
2	89	0	0	0	0	0	0	0	30	20	0	0	0	0	28	167
3	0	30	0	0	0	0	0	225	502	57	192	0	0	0	1	1007
4	34	1	0	0	73	0	0	0	0	0	0	0	0	0	0	108
5	89	1	38	256	0	0	0	0	0	0	0	0	0	0	0	384
6	284	1	49	0	0	0	0	0	0	0	0	0	0	0	0	334
7	0	1	36	0	0	1	0	0	86	104	0	0	19	0	0	247
8	161	0	112	0	0	0	0	0	19	0	0	0	0	0	13	305
9	0	1	502	0	0	1	0	0	0	231	1	76	0	0	0	812
10	1254	46	0	0	0	196	0	0	71	0	0	61	0	0	0	1628
11	0	1	213	9	0	1	0	0	1	0	0	0	0	0	0	225
2	47	0	0	0	0	0	0	0	54	36	0	0	0	0	0	137
13	32	1	174	0	0	1	0	0	138	0	0	0	0	0	0	346
14	0	1	16	0	0	1	0	0	27	109	0	0	0	0	94	248
15	0	1	29	0	0	0	0	3	0	156	0	0	0	0	0	189
Total	1990	90	1169	265	73	201	0	421	928	1275	193	137	19	0	268	7029

the impacts of the new street pattern, the second author received numerous comments from local citizens about how they traveled between points in the Village network. The comments indicated a surprising lack of consensus on which new path between many given O-D pairs in VillNet2 is the 'best'. Although VillNetl had more path alternatives than VillNet2 now does, VillNetl usually had one or two 'obvious' (commonly used) choices. While VillNet2 has fewer alternatives, often there is no clearly superior path choice, leading to greater dispersion in traffic flow, which is reflected in a lower Θ value.

For the VillNet 2 network, the sum of squared errors with respect to the license plate O D table is 668,806 from THE, and 851,698 from OD.Theta. Much of this error is associated with the major east-west through trips shown in Table 12. Both THE and OD-Theta indicate a shift of through trips from the $(9,3)$ O-D pair to the parallel $(10,1) O-D$ pair to the north that is not reflected in the license plate survey. Because VillNet2's oneway pattern restricts the number of route choices previously available in VillNet1, the VillNet2 results may be an indication that OD-Theta performs better where a wider range of route alternatives exist.

Table 12. Sensitivity to network changes

Method	Data Set	$(1,10)$	$(10,1)$	$(3,9)$	$(9,3)$
		396	670	247	293
		480	876	243	344
THE		343	982	312	574
	VillNet2	442	1477	338	368
OD.Theta	VillNet1	363	888	236	524
	VillNet2	562	1254	502	502

CONCI USIONS

Based on the tests of the OD•Theta method and comparisons with THE, several conclusions can be drawn.

1. Estimation of an $\mathrm{O}-\mathrm{D}$ table and the Θ parameter for stochastic assignment can be accomplished at the same time. This improves the consistency of the estimation, because the O-D estimation occurs in conjunction with the value of the Θ parameter that best fits the observed link flows.
2. The input requirements are simplified. Only link volume counts and link travel costs are needed; no target trip table is required. If a target trip table can be partially or fully specified, terms can be added to the objective function that incorporate this additional information without affecting the problem structure.
3. $\mathrm{O}-\mathrm{D}$ table estimation and Θ parameter calibration have been demonstrated on a real network that offered:
(a) flow and link cost data of reasonable accuracy;
(b) a separately-estimated $\mathrm{O}-\mathrm{D}$ table;
(c) a size and complexity greater than the test networks commonly seen in the literature;
(d) a change in network conditions (introduction of one-way arterials) that permitted some evaluation of model sensitivity.

The network dispersion parameter Θ was 0.255 in the original VillNet study area and decreased to 0.118 after the one-way street changes. This decreased Θ value can be interpreted in terms of decreased driver certainty in selecting shortest paths after many obvious direct paths have been made unusable.

Acknowledgments-This paper is based on research conducted with the support of the Purdue Research Foundation (PRF). A large part of the paper's preparation took place while the second author was on sabbatical leave at the Department of Transportation Planning and Highway Engineering, Delft University of Technology, The Netherlands. The authors thank PRF, the faculty and research staff at Delft, and the anonymous reviewers for their assistance and helpful comments.

REFERENCES

Bazaraa M. S. and Shetty C. M. (1979) Nonlinear Programming: Theory and Algorithms. Wiley, New York.
Beagan D. F. (1986) Estiminating a trip table from counts. McTrans 1, 8-9. Transportation Research Center, University of Florida, Gainesville, FL.
Bromage E. J. (1988) The Highway Emulator. Release 3.0, user's manual, Central Transportation Planning Staff, Boston.
Dial R. B. (1971) A probabilistic multipath assignment model which obviates path enumeration. Transp Res. 5, 83-111.
Eaves B. C. (1971) The linear complementarity problem. Mgmt Sci. 17, 612-634.
Fisk C. S. (1977) Note on the maximum likelihood calibration on Dial's assignment method. Transpn Res. 11, 67-68.
Fricker J. D. and Moffett D. P. (1993) Traffic assignment model calibration when precision is essential. Proc. 63rd Annual Meeting, Institute of Transportation Engineers, The Hague, The Netherlands, pp. 258-261.
Gur Y. J. (1983) Estimating trip tables from traffic counts: comparative evaluation of available techniques. Transpn Res. Rec. 944, 113-117.

Haggerty G. B. (1972) Elementary Numerical Analysis with Programming. McGraw-Hill, New York.
Lemke C. E. (1968) On complementary pivot theory. Mathematics of the Decision Sciences, Part I, pp. 95-114. American Mathematical Society.
Minieka E. (1978) Optimization Algorithms for Networks and Graphs, Marcel Dekker, New York.
Nguyen S. (1977) Estimating an OD Matrix from Network Data: A Network Equilibrium Approach. Publication No. 87, Centre de Recherche sur les Transports. Universite de Montreal.
Robillard P. (1974) Calibration of Dial's Assignment Method. Transpn Sci. 8, 117-125.
Sheffi Y. (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice-Hall, Englewood Cliffs, N. J.
Van Zuylen H. and Willumsen L. G. (1980) The most likely trip matrix estimated from traffic counts. Transpn Res. 14B 281-293.
Willumsen L. G. (1981) Simplified transport models based on traffic counts. Transportation 10, 257-278.

